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Sigmatropic rearrangement reactions constitute an
important class of carbon—carbon bond-forming trans-
formations.'* The [3,3] subclass (e.g. the Cope rearrange-
ment) may involve heteroatoms, such as in the Claisen
rearrangement (with oxygen), and proved to be versatile
in constructing polyfunctional compounds in a stereo-
chemically controlled way.> There is little evidence of
such a rearrangement among purines. Ranganathan
et al.* reported a few cases involving the O-6 and N-1
atoms of hypoxanthine, while Shimizu and Miyaki® have
pursued some introductory studies on the alkyl migration
and N-3—-N-9 rearrangement properties of purines. We
became particularly interested in this field owing to the
antiretroviral and adenosine deaminase inhibiting aden-
allenes (R-enantiomer: 1, Scheme 1) featuring a unique
allenic moiety.®” The challenging synthesis of an axially
chiral allene from a centrally chiral alkyne on a purine
substrate prompted us to investigate the [3,3] sigmatropic
rearrangement of 3-alkynyladenines.

Adenine was alkylated with propargyl bromide in
DMEF in either the absence or presence of potassium
carbonate to afford nearly exclusively pure 3- (2) and
9-propargyladenine (3), respectively, in accordance with
literature data for analogous cases.®'! However, the site
of alkylation was also corroborated in selective INEPT
experiments'®'3 irradiating the methylene protons of the
propargyl moiety to obtain signals at C-2 and C-4, and
C-4 and C-8 atoms, respectively. Allenes 4 and 5 were
prepared in a base-catalysed reaction from the corres-
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ponding alkyne, 2 and 3, respectively (Scheme 2). Then
we pursued systematic studies on the thermal behaviour
of these compounds. By gradually increasing the temper-
ature we have observed the transformation of 2 to 5
(36% on a preparative scale, at 150°C in o-xylene, 1.5 h),
along with a very small amount of 3 (0.3%). Performing
this experiment with compounds 3-5, no significant
transformations could be observed. These facts clearly
suggest an N-3—N-9 [3,3] sigmatropic rearrangement of
3-propargyladenine (2) to 9-allenyladenine (5), accom-
panied by a minor alkyl migration (2—3).

The above transformations can be understood by
comparing the heats of formation for the compounds
involved (Table 1). The energy differences between the
respective 3- and 9-substituted adenines are in good
agreement with those of the 3H- and 9H-tautomeric
forms of adenine (48.6 kJ mol™!)'* and 2H- and 1H-
pyrrole (54.4 kJ mol ™), respectively. The calculations
were extended to all ring-substituted propargyladenines
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Table 1. Calculated heats of formation for compounds 2-7.

Compd. Site of alkylation AH; (AM1)/kJ mol !
2 N-3 673.6
3 N-9 626.3
4 N-3 660.7
5 N-9 608.3
6 N-1 715.9
7 N-7 657.7

Table 2. Melting points and "H-NMR data of compounds.

TH-NMR data in DMSO-dg
(8 in ppm; J in Hz)

Compd. M.p./°C

2 194-196 3.54 (t, 1H, *J=2.5, C=CH); 5.17
(d, 2H, *J=2.5, CH,); 7.77 (s, TH,
H-8%); 7.99 (s, 2H, NH,); 8.41 (s,
1H, H-2¥%)

3.46 (t, 1H, *J=2.5, C=CH); 5.03
(d, 2H, *J=2.5, CH,); 7.27 (s, 2H,
NH,); 8.16 (s, 1H, H-8*); 8.19 (s,
1H, H-2¥)

5.50 (dd, 1H, *J=10; 2J=3,
HCH); 6.31 (dd, 1H, *J=17; 2J=
3, HCH); 6.61 (dd, 1H, *J=17;
2J=10, CH); 7.09 (s, 3H, H-8%,
NH,); 8.09 (s, TH, H-2*)

5.80 (d, 2H, *J=7 Hz, CH,); 7.36
(s, 2H, NH,); 7.45 {t, TH, *J=7,
CH); 8.18 (s, 1H, H-8*%); 8.20 (s,
1H, H-2%)

4,08 (s, 2H, CH,0H); 5.20 (s, 2H,
CH,N); 5.25 (bs, 1H, deut.,
CH,0H); 7.78 (s, 1H, H-8%); 8.05
and 8.12 (2xbs, 2x 1H, deut.,
NH,); 8.42 (s, 1H, H-2¥)

4.50 (s, 2H, methylene); 5.52 (bs,
1H, CH,0H); 5.58 (s, 2H, methy!-
ene); 7.30 (bs, 2H, NH,); 8.15
and 8.16 (2xs, 2x 1H, H-8 and
H-2)

3 206-208

4 260-265

5 170-175

8 ~180 (dec.)

9 ~ 188 (dec.)

[Table 1: 1-propargyl-adenine (6); 7-propargyladenine
(7)] and the following stability order was obtained for
the nitrogen substitution: N-1 (6) <N-3 (2) <N-7
(7)<N-9 (3). This reflects, in part, the heteroaromatic
stabilization exerted by the imidazole and pyrimidine
rings, which can be observed in their most stable forms
in compounds 3 and 7. The energy difference between 2

Table 3. Actual constraints of the reaction generator in RAIN.
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and 6, and 3 and 7, respectively, can probably be ascribed
to the absence/presence of steric hindrance between the
exocyclic amino and the propargyl groups.

Experimental proof for distinguishing between the two
terminal atoms of the rearranging side-chain has also
been sought after. Deuterium-labelled propargyl brom-
ide'® was used in the alkylation experiment, but most of
the initial deuterium content was lost, making this sub-
strate unsuitable for labeling studies. Next, 1-chloro-2-
butyne-4-01'7 was tried for the alkylation of adenine and
N3-(4-hydroxy-2-butyne-1-yl)adenine (8, 34% from
adenine) was subjected to rearrangement to give N°~(1-
hydroxy-2,3-butadiene-2-yl)adenine (9) along with un-
reacted starting material. Selected physical and spectral
data of compounds have been listed in Table 2.
Satisfactory elemental analyses have been obtained for
all new compounds.

There are several hypotheses on the mechanism of
[3,3] sigmatropic rearrangement reactions, including con-
certed bond-breaking and bond-forming processes, birad-
icals, radical pairs, dipoles etc.® When investigating the
25 transformation, using AM1 calculations, it turned
out that a concerted process is unlikely because small
changes in internal coordinates are causing a large change
in the distance between chemically bound atoms and the
geometry optimization process would produce incorrect
results. In turn, we have supposed an ionic transition
state (e.g. A; many more may exist owing to resonance
structures; Scheme 3). The net atomic charge and bond
order calculations indicate that in this transition state
(a) the most positive charge resides at C-6, with the most
negative one at the central carbon of the former propar-
gyl chain (B) and (b) the weakest bonds are those
between the nitrogen atom (N-3) and the terminal
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carbon, and the N-9 and other terminal carbon of the
former side-chain, respectively, alluding to bond-
breaking and bond-forming between the mentioned
atoms (C; Scheme 4).

Interestingly, essentially the same transition state (D)
was deduced to be the most likely when the above
transformation was subjected to intermediate analysis
using the computer program RAIN.!® The boundary
conditions of the calculations have been listed in Table 3.

The experimental and computational evidence pre-
sented seems to support the view that the [3,3]
sigmatropic rearrangement of the 3-alkynyladenines men-
tioned above most probably follow a uni- and intramolec-
ular pathway.

Acknowledgment. Thanks are due to Dr. Gy. Batta and
Dr. L. Szilagyi for the selective INEPT measurements.
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